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Transverse instability of interfacial solitary waves
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The linear stability of finite-amplitude interfacial solitary waves in a two-layer fluid
of finite depth is examined analytically on the basis of the Euler equations. An
asymptotic analysis is performed, which provides an explicit criterion of instability in
the case of long-wavelength transverse disturbances. This result leads to the general
statement that, when the amplitude of the solitary wave is increased, the solution
becomes transversely unstable before an exchange of longitudinal stability occurs.

1. Introduction
Longitudinal stability is a stability to disturbances that depend only on the main

wave travelling direction, while transverse stability is a stability to disturbances that
depend also on its transverse direction. In the present paper, the transverse stability
of finite-amplitude interfacial solitary waves in a two-layer fluid of finite depth is
examined. The effect of interfacial tension is neglected. The corresponding small-
amplitude solitary waves are known to be stable both longitudinally and transversely
from analyses based on the Korteweg–de Vries (KdV) equation (Jeffery & Kakutani
1970; Benjamin 1972) and the Kadomtsev–Petviashvili (KP) equation with negative
dispersion (Kadomtsev & Petviashvili 1970; Zakharov 1975).

In previous studies on the stability of finite-amplitude waves, surface solitary
waves have been the main focus. Tanaka (1986) first examined their longitudinal
stability on the basis of the Euler equations, and discovered that an exchange of
longitudinal stability occurs at the first stationary value of the total wave energy. The
corresponding maximum surface displacement is 0.781 times the undisturbed depth
of the fluid. Tanaka et al. (1987) also conducted numerical simulations to study the
time development of a disturbed surface solitary wave, and found that the growth rate
of sufficiently small disturbance agrees well with that of the linear stability analysis.
A more precise linear stability analysis was carried out later by Longuet-Higgins &
Tanaka (1997).

The transverse stability of surface solitary waves was examined by Kataoka &
Tsutahara (2004a). The criterion of transverse instability is derived analytically, and
it is found that the surface solitary waves are transversely unstable if the maximum
surface displacement is greater than 0.713 times the undisturbed depth of the fluid.
This critical amplitude is well below that (= 0.781) for the longitudinal instability.
Thus, the stability of surface solitary waves has been clarified to some extent.

For finite-amplitude interfacial solitary waves (with no interfacial tension effects),
on the other hand, it is only recently that the study of their stability has been initiated
(see Calvo & Akylas 2003 for the case of strong interfacial tension effects). The
present author examined their longitudinal stability analytically on the basis of the
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Figure 1. Geometry: (a) dimensional system; (b) non-dimensional system.

Euler equations (Kataoka 2006), and found that an exchange of longitudinal stability
occurs at every stationary value of the total wave energy. There are no previous
studies on the transverse stability, however, as far as the author knows, and it is
treated in the present work. Since the number of parameters of interfacial solitary
waves is three (due to the addition of the density ratio and the depth ratio of the
two layers) instead of one for surface solitary waves, it is an enormous task even
to gain a general view from numerical stability analysis. It is, therefore, desirable to
derive a stability criterion not numerically but analytically. Following the analytical
method used in Kataoka & Tsutahara (2004a), we here examine the linear stability
with respect to long-wavelength transverse disturbances. We then obtain a sufficient
condition for the transverse instability explicitly, which leads to the general statement
that, when the branch of the solitary wave solution is traced from small amplitude, the
solution becomes transversely unstable before an exchange of longitudinal stability
occurs.

In § 2 we formulate basic equations. The stability problem is reduced to a linear
eigenvalue problem. In § 3, we solve this eigenvalue problem for small transverse
wavenumbers of disturbances, and obtain a criterion of transverse instability. In § 4
this criterion is used to derive a general statement on the stability of interfacial
solitary waves, and in § 5 we apply the criterion to various solitary wave solutions to
study their transverse instability specifically. In § 6, the analytical solution obtained
in § 3 is physically interpreted, and finally in § 7 some concluding remarks follow.

2. Basic equations
Consider a two-layer fluid where a lighter fluid lies above a heavier fluid under

uniform acceleration due to gravity g (see figure 1a). The density of the upper fluid
is ρU and that of the lower ρL( >ρU ). The fluids are incompressible, inviscid, and
occupy a channel between two horizontal rigid boundaries where the upper fluid layer
has undisturbed depth DU and the lower layer DL. In what follows, index U refers to
the upper fluid and index L to the lower, and all variables are non-dimensionalized
using g, ρL, and DL. The flow in each layer is irrotational and the effect of interfacial
tension is neglected. Let x, y, z be the Cartesian coordinates with the z-axis pointing
vertically upward and the origin located on the undisturbed interface (see figure 1b).
The fluid motion is governed by

∂2φU

∂x2
+

∂2φU

∂y2
+

∂2φU

∂z2
= 0 for η < z < D, (2.1)
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∂2φL

∂x2
+

∂2φL

∂y2
+

∂2φL

∂z2
= 0 for − 1 <z < η, (2.2)

∂φU

∂z
= 0 at z = D, (2.3)

∂η

∂t
+

∂φU

∂x

∂η

∂x
+

∂φU

∂y

∂η

∂y
=

∂φU

∂z
at z = η, (2.4)

∂η

∂t
+

∂φL

∂x

∂η

∂x
+

∂φL

∂y

∂η

∂y
=

∂φL

∂z
at z = η, (2.5)

− ρ

{
∂φU

∂t
+

1

2

[(
∂φU

∂x

)2

+

(
∂φU

∂y

)2

+

(
∂φU

∂z

)2
]}

+
∂φL

∂t

+
1

2

[(
∂φL

∂x

)2

+

(
∂φL

∂y

)2

+

(
∂φL

∂z

)2
]

+ (1 − ρ)η = f (t) at z = η, (2.6)

∂φL

∂z
= 0 at z = − 1, (2.7)

where t is the time, φU (x, y, z, t) and φL(x, y, z, t) are the velocity potentials of the
upper and lower fluids, respectively, η(x, y, t) is the interfacial elevation, and f (t) is
a given function of t . The ρ and D are, respectively, the density ratio and the depth
ratio of the two fluids defined by

ρ =
ρU

ρL

, D =
DU

DL

. (2.8)

The cases 0 � ρ < 1 (statically stable) and 0<D < ∞ (finite depth) are considered
throughout this paper.

Let us consider a solution of (2.1)–(2.7) which is independent of t and y in the
following form:

φU = −vx + ΦU (x, z; v), φL = −vx + ΦL(x, z; v), η = ηI (x; v), (2.9)

with

f (t) = (1 − ρ)v2/2, (2.10)

where v is a positive real parameter, and ∂ΦU/∂x, ∂ΦU/∂z, ∂ΦL/∂x, ∂ΦL/∂z, and ηI

decay as x → ± ∞. ΦU , ΦL, and ηI are governed by

∇2
2ΦU = 0 for η < z <D, (2.11)

∇2
2ΦL = 0 for −1 < z < η, (2.12)

∂ΦU

∂z
= 0 at z =D, (2.13)

(
−v +

∂ΦU

∂x

)
dηI

dx
=

∂ΦU

∂z
at z = ηI , (2.14)

(
−v +

∂ΦL

∂x

)
dηI

dx
=

∂ΦL

∂z
at z = ηI , (2.15)
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ρv
∂ΦU

∂x
− ρ

2

[(
∂ΦU

∂x

)2

+

(
∂ΦU

∂z

)2
]

− v
∂ΦL

∂x

+
1

2

[(
∂ΦL

∂x

)2

+

(
∂ΦL

∂z

)2
]

+ (1 − ρ)ηI = 0 at z = ηI , (2.16)

∂ΦL

∂z
= 0 at z = − 1, (2.17)

∂ΦU

∂x
→ 0,

∂ΦU

∂z
→ 0,

∂ΦL

∂x
→ 0,

∂ΦL

∂z
→ 0, ηI → 0 as x → ± ∞, (2.18)

where

∇2
2 =

∂2

∂x2
+

∂2

∂z2
. (2.19)

The solution (2.9) represents a steady propagation of two-dimensional localized wave
against a uniform stream of constant velocity −v in the x-direction. When the
solution exists, the decay described in (2.18) is exponentially fast, and the origin of
the x-coordinate can be chosen such that ∂ΦU/∂x, ∂ΦL/∂x, and ηI are even in x.
We call this solution a solitary wave solution. The existence of the solitary wave
solution has been confirmed both analytically and numerically for various sets of the
parameters ρ, D, and v (Amick & Turner 1986; Funakoshi & Oikawa 1986; Pullin &
Grimshaw 1988; Turner & Vanden-Broeck 1988; Evans & Ford 1996; Laget & Dias
1997; Michallet & Barthélemy 1998; Grue et al. 1999; Kataoka 2006). According to
the previous studies and the results of our numerical computation (part of which is
shown in § 4 below), the condition for the existence of the solitary wave solution is

c < v <V, (2.20)

where

c =

√
1 − ρ

1 + ρ/D
(2.21)

is the phase speed of a linear long non-dispersive wave, and V is specifically given as
follows:

(i) When ρ is larger than some critical value, or ρ >ρcr(D), where ρcr(D) is an
increasing function of D, e.g.

ρcr(D) =

⎧⎪⎨
⎪⎩

0.0005 ∼ 0.0006 at D =1,

0.05 ∼ 0.06 at D = 3,

0.19 ∼ 0.21 at D = 10,

(2.22)

V is equal to the propagation speed of internal bores:

V =

√
(D + 1)(1 − √

ρ)

1 +
√

ρ
for ρ >ρcr(D) (2.23)

(Funakoshi & Oikawa 1986; Laget & Dias 1997; Dias & Vanden-Broeck 2003).
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(ii) When ρ is smaller than the above critical value, or ρ <ρcr(D), V is smaller than
the propagation speed of internal bores:

V <

√
(D + 1)(1 − √

ρ)

1 +
√

ρ
for ρ <ρcr(D), (2.24)

and a precise upper limiting value V in this case is not found due to the computational
difficulty in specifying it.

In order to examine the linear stability of the above solitary wave solution (2.9) on
the basis of (2.1)–(2.7), the following form is assumed for a solution of (2.1)–(2.7):

φU = − vx + ΦU + φ̂U (x, z) exp(λ t + iεy), (2.25a)

φL = − vx + ΦL + φ̂L(x, z) exp(λ t + iεy), (2.25b)

η = ηI + η̂(x) exp(λ t + iεy), (2.25c)

where ε is a given positive constant and λ is a complex constant to be determined.
Substituting (2.25) into (2.1)–(2.7) and linearizing with respect to (φ̂U , φ̂L, η̂), we obtain
the eigenvalue problem which has eigenvalue λ. If there exists a solution (φ̂U , φ̂L, η̂)
for which λ has a positive real part, the corresponding solitary wave is linearly
unstable. The longitudinal stability, or the stability with respect to disturbances that
have no dependence on y (ε =0) was examined analytically in Kataoka (2006). It
was found that an exchange of longitudinal stability (the appearance of a positive
real eigenvalue λ from zero) occurs at the stationary value (or dE/dv = 0) of the total
energy E of the solitary wave defined by

E(v) =

∫ ∞

−∞

{
ρ

2

∫ D

ηI

[(
∂ΦU

∂x

)2

+

(
∂ΦU

∂z

)2]
dz

+
1

2

∫ ηI

−1

[(
∂ΦL

∂x

)2

+

(
∂ΦL

∂z

)2]
dz +

1 − ρ

2
η2

I

}
dx, (2.26)

and the eigenvalue λ of small modulus (|λ| � 1) near the stability threshold
|dE/dv| � 1 is given by

λ=

⎧⎪⎨
⎪⎩

±
(

v
dM

dv

dΩ

dv

)−1
dE

dv
for

dE

dv

dM

dv

dΩ

dv
> 0,

no real solution for
dE

dv

dM

dv

dΩ

dv
< 0,

(2.27)

if the solitary wave solutions do not bifurcate and v never becomes stationary at the
stationary value of E. Here Ω and M are properties of the solitary wave defined by

Ω(v) =
2

v

(
TL − TU

D

)
−
(
1 +

ρ

D

)
vM, M(v) =

∫ ∞

−∞
ηI dx, (2.28a, b)

with

TU (v) =
ρ

2

∫ ∞

−∞
dx

∫ D

ηI

[(
∂ΦU

∂x

)2

+

(
∂ΦU

∂z

)2]
dz, (2.28c)

TL(v) =
1

2

∫ ∞

−∞
dx

∫ ηI

−1

[(
∂ΦL

∂x

)2

+

(
∂ΦL

∂z

)2]
dz, (2.28d)

where M represents the mass, and TU and TL are the kinetic energy in the upper and
lower fluid layers, respectively.
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Now we investigate the transverse stability, or the stability with respect to
disturbances that depend not only on the x- and z-directions but also on the
y-direction (ε > 0). Substituting (2.25) into (2.1)–(2.7), linearizing with respect to
(φ̂U , φ̂L, η̂), and imposing decaying conditions as x → ± ∞, we obtain the following
set of linear equations for (φ̂U , φ̂L, η̂):

∇2
2φ̂U = ε2φ̂U for ηI < z < D, (2.29)

∇2
2φ̂L = ε2φ̂L for − 1 < z < ηI , (2.30)

∂φ̂U

∂z
=0 at z = D, (2.31)

LU[φ̂U , η̂] = − λη̂ at z = ηI , (2.32)

LL[φ̂L, η̂] = − λη̂ at z = ηI , (2.33)

LI[φ̂U , φ̂L, η̂] = λ(ρφ̂U − φ̂L) at z = ηI , (2.34)

∂φ̂L

∂z
=0 at z = − 1, (2.35)

φ̂U (x, z) → 0, φ̂L(x, z) → 0, η̂(x) → 0 as x → ± ∞, (2.36)

where ∇2
2, LU, LL, and LI are the linear operators defined by (2.19) and

LU[φ̂U , η̂] =

(
− ∂

∂z
+

dηI

dx

∂

∂x

)
φ̂U +

[(
∂2ΦU

∂x2
+

∂2ΦU

∂x∂z

dηI

dx

)
+

(
−v +

∂ΦU

∂x

)
d

dx

]
η̂,

(2.37)

LL[φ̂L, η̂] =

(
− ∂

∂z
+

dηI

dx

∂

∂x

)
φ̂L +

[(
∂2ΦL

∂x2
+

∂2ΦL

∂x∂z

dηI

dx

)
+

(
−v +

∂ΦL

∂x

)
d

dx

]
η̂,

(2.38)

LI[φ̂U , φ̂L, η̂] = −ρ

[(
−v +

∂ΦU

∂x

)
∂

∂x
+

∂ΦU

∂z

∂

∂z

]
φ̂U

+

[(
−v +

∂ΦL

∂x

)
∂

∂x
+

∂ΦL

∂z

∂

∂z

]
φ̂L

+

{
−ρ

[(
−v +

∂ΦU

∂x

)
∂2ΦU

∂x∂z
+

∂ΦU

∂z

∂2ΦU

∂z2

]

+

(
−v +

∂ΦL

∂x

)
∂2ΦL

∂x∂z
+

∂ΦL

∂z

∂2ΦL

∂z2
+ 1 − ρ

}
η̂. (2.39)

Equations (2.29)–(2.36) constitute an eigenvalue problem for (φ̂U , φ̂L, η̂) with
eigenvalue λ. In the next section we solve this eigenvalue problem (2.29)–(2.36)
for small ε in order to study the stability of the solitary wave to long-wavelength
transverse disturbances.

3. Stability to long-wavelength transverse disturbances
We seek an asymptotic solution of (2.29)–(2.36) for small ε. At leading order in

ε, the terms on the right-hand sides of (2.29) and (2.30) can be ignored, and the
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eigenvalue problem (2.29)–(2.36) has the following leading-order solution with λ= 0:

φ̂U = φ̂
(0)
UC ≡ ∂ΦU

∂x
, φ̂L = φ̂

(0)
LC ≡ ∂ΦL

∂x
, η̂ = η̂

(0)
C ≡ dηI

dx
, λ= 0. (3.1)

The λ will be non-zero if the terms on the right-hand sides of (2.29) and (2.30), or the
terms of O(ε2) are recovered. Since the recovered terms are O(ε2), we may conjecture
that λ = O(ε2). However, this is only a rough estimate and in the analysis we impose
a weaker condition that λ=O(ε), i.e.

λ= ελ1 + ε2λ2 + · · · , (3.2)

where λn (n= 1, 2, . . .) is a complex constant to be determined.† The above choice of
the weaker condition (3.2) on λ is, in fact, essential for consistency of the following
analysis.

Let us look for a solution (φ̂U , φ̂L, η̂) of (2.29)–(2.35) with a moderate variation
in x and z (∂ĥ/∂x =O(ĥ) and ∂ĥ/∂z = O(ĥ), where ĥ represents (φ̂U , φ̂L, η̂)), in the
following power series of ε:

φ̂UC = φ̂
(0)
UC + εφ̂

(1)
UC + ε2φ̂

(2)
UC + · · · , (3.3a)

φ̂LC = φ̂
(0)
LC + εφ̂

(1)
LC + ε2φ̂

(2)
LC + · · · , (3.3b)

η̂C = η̂
(0)
C + εη̂

(1)
C + ε2η̂

(2)
C + · · · , (3.3c)

where the subscript C is attached to indicate the type of solution (core solution).
Substituting (3.2) and (3.3) into (2.29)–(2.35) and collecting the same-order terms

in ε, we obtain a series of equations for (φ̂(n)
UC, φ̂

(n)
LC, η̂

(n)
C ) (n= 1, 2, . . .):

∇2
2φ̂

(n)
UC = φ̂

(n−2)
UC for ηI < z <D, (3.4)

∇2
2φ̂

(n)
LC = φ̂

(n−2)
LC for − 1 < z < ηI , (3.5)

∂φ̂
(n)
UC

∂z
= 0 at z =D, (3.6)

LU

[
φ̂

(n)
UC, η̂

(n)
C

]
= G(n) at z = ηI , (3.7)

LL

[
φ̂

(n)
LC, η̂

(n)
C

]
= G(n) at z = ηI , (3.8)

LI

[
φ̂

(n)
UC, φ̂

(n)
LC, η̂

(n)
C

]
= H (n) at z = ηI , (3.9)

∂φ̂
(n)
LC

∂z
= 0 at z = − 1, (3.10)

where φ̂
(−1)
UC = φ̂

(−1)
LC = 0 and

G(n) = −
n∑

m= 1

λmη̂
(n−m)
C =

⎧⎪⎪⎨
⎪⎪⎩

−λ1η̂
(0)
C (n= 1),

−λ1η̂
(1)
C − λ2η̂

(0)
C (n= 2),

· · · ,

(3.11)

† The stability of the solitary wave is determined at λ=O(ε) or O(ε2) because the terms of O(ε2)
appear in the basic equations (2.29) and (2.30). The λ is, however, expanded up to an infinite order
in (3.2) because the higher-order terms of O(ε3) are a priori non-zero. However, these higher-order
terms have no influence on the stability.
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H (n) =

n∑
m=1

λm

(
ρφ̂

(n−m)
UC − φ̂

(n−m)
LC

)
=

⎧⎪⎪⎨
⎪⎪⎩
λ1

(
ρφ̂

(0)
UC − φ̂

(0)
LC

)
(n= 1),

λ1

(
ρφ̂

(1)
UC − φ̂

(1)
LC

)
+ λ2

(
ρφ̂

(0)
UC − φ̂

(0)
LC

)
(n = 2),

· · · .
(3.12)

The above set of equations (3.4)–(3.10) is linear and inhomogeneous and its
homogeneous part has a non-trivial solution (3.1) that decays exponentially as
x → ± ∞. Therefore, for this set of equations (3.4)–(3.10) to have a solution that
does not diverge exponentially as x → ± ∞, its inhomogeneous terms must satisfy the
solvability condition. Since the homogeneous part satisfies∫ ∞

−∞

{∫ D

ηI

ρ
∂ΦU

∂x
∇2

2φ̂
(n)
UC dz +

∫ ηI

−1

∂ΦL

∂x
∇2

2φ̂
(n)
LC dz

+

[
−ρ

∂ΦU

∂x
LU

[
φ̂

(n)
UC, η̂

(n)
C

]
+

∂ΦL

∂x
LL

[
φ̂

(n)
LC, η̂

(n)
C

]
− dηI

dx
LI

[
φ̂

(n)
UC, φ̂

(n)
LC, η̂

(n)
C

]]
z = ηI

}
dx = 0,

the corresponding inhomogeneous terms φ̂
(n−2)
UC , φ̂(n−2)

LC , G(n), and H (n) on the right-hand
sides of (3.4)–(3.10) must satisfy∫ ∞

−∞

(
ρ

∫ D

ηI

∂ΦU

∂x
φ̂

(n−2)
UC dz +

∫ ηI

−1

∂ΦL

∂x
φ̂

(n−2)
LC dz

)
dx

+

∫ ∞

−∞

[(
−ρ

∂ΦU

∂x
+

∂ΦL

∂x

)
G(n) − dηI

dx
H (n)

]
z = ηI

dx =0, (3.13)

where the quantities in the square brackets with subscript z = ηI are evaluated at
z = ηI .

For n= 1, (3.13) is identically satisfied, and a solution of (3.4)–(3.10) is

φ̂
(1)
UC = −λ1

∂ΦU

∂v
, φ̂

(1)
LC = −λ1

∂ΦL

∂v
, η̂

(1)
C = −λ1

∂ηI

∂v
, (3.14)

where ∂ΦU/∂v, ∂ΦL/∂v, and ∂ηI /∂v are the derivatives of ΦU , ΦL, and ηI with
respect to v for fixed x and z. The homogeneous solution (3.1) multiplied by an
arbitrary constant is omitted in (3.14) because it can be incorporated into the leading-
order solution (3.1). The solution (3.14), however, does not satisfy the decaying
boundary conditions (2.36), since ∂ΦU/∂v and ∂ΦL/∂v do not decay either as x → ∞
or x → − ∞. In fact, in order to construct a solution that satisfies (2.36), we also must
seek a solution whose variation is slow in x. This solution will be called a far-field
solution. By matching the present core solution (3.3) with the far-field solution, the
overall solution of (2.29)–(2.35) that satisfies the boundary conditions (2.36) can be
constructed. In this section we concentrate on obtaining the core solution putting
aside the boundary conditions (2.36), while Appendices B and C contain the far-field
solution and the matching, respectively.

For n= 2, (3.13) becomes

λ2
1

v

dE

dv
= −E, (3.15)

where E is defined by (2.26), and use has been made of∫ ∞

−∞

[
ρ

∫ D

ηI

(
∂ΦU

∂x

)2

dz +

∫ ηI

−1

(
∂ΦL

∂x

)2

dz

]
dx − E = 0 (3.16)
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(see Appendix A for a derivation). When (3.15) is satisfied, a solution of (3.4)–(3.10)
for n=2 is

φ̂
(2)
UC = φ̄

(2)
UC −λ2

∂ΦU

∂v
, φ̂

(2)
LC = φ̄

(2)
LC −λ2

∂ΦL

∂v
, η̂

(2)
C = η̄

(2)
C −λ2

∂ηI

∂v
, (3.17)

where (φ̄(2)
UC, φ̄

(2)
LC, η̄

(2)
C ) is a particular solution of (3.4)–(3.10) for n= 2 whose inho-

mogeneous terms G(2) and H (2) are replaced by −λ1η̂
(1)
C and λ1(ρφ̂

(1)
UC − φ̂

(1)
LC), respec-

tively. From (3.15), we have

λ1 =

⎧⎪⎪⎨
⎪⎪⎩

±
√

−vE

dE/dv
for

dE

dv
< 0,

± i

√
vE

dE/dv
for

dE

dv
> 0.

(3.18)

When dE/dv < 0, the solitary wave is transversely unstable, since there is a solution
for which the eigenvalue has a positive real part. When dE/dv > 0, the stability is not
determined at this order, since the real part of λ1 is zero. To find the stability in the
latter case, we must proceed to the next order.

At n= 3, (3.13) becomes

2λ1λ2

v

dE

dv
=
[
ρφ̂

(1)
UCû

(2)
UC − φ̂

(1)
LCû

(2)
LC

]
x→∞ −

[
ρφ̂

(1)
UCû

(2)
UC − φ̂

(1)
LCû

(2)
LC

]
x→−∞, (3.19)

where the quantities in the square brackets with subscript x → ∞ or x → − ∞ are
evaluated as x → ∞ or x → − ∞ , respectively, and

û
(2)
UC ≡ −

∫ D

ηI

∂φ̂
(2)
UC

∂x
dz +

(
−v +

[
∂ΦU

∂x

]
z = ηI

)
η̂

(2)
C

=
[
û

(2)
UC

]
x→∞ − λ2ηI +

∫ x

∞

(
−
∫ D

ηI

∂ΦU

∂x
dz + λ2

1

∂ηI

∂v

)
dx ′, (3.20a)

û
(2)
LC ≡

∫ ηI

−1

∂φ̂
(2)
LC

∂x
dz +

(
−v +

[
∂ΦL

∂x

]
z = ηI

)
η̂

(2)
C

=
[
û

(2)
LC

]
x→∞ − λ2ηI +

∫ x

∞

(∫ ηI

−1

∂ΦL

∂x
dz + λ2

1

∂ηI

∂v

)
dx ′. (3.20b)

The key to deriving (3.19) is to note that ∂ΦU/∂x, ∂ΦL/∂x, −λ1dηI/dx,
and λ1 [ρ∂ΦU/∂x − ∂ΦL/∂x]z = ηI

included in (3.13) for n= 3 are equal to the
inhomogeneous terms of (3.4) for n= 2, (3.5) for n= 2, (3.7) (or (3.8)) for n= 1,
and (3.9) for n= 1, respectively, and replace them with the corresponding left-hand-

side terms, ∇2
2φ̂

(2)
UC , ∇2

2φ̂
(2)
LC , LU[φ̂(1)

UC, η̂
(1)
C ] (or LL[φ̂(1)

LC, η̂
(1)
C ]), and LI[φ̂

(1)
UC, φ̂

(1)
LC, η̂

(1)
C ].

We then integrate the result by parts to obtain (3.19). The [φ̂(1)
UC]x→−∞, [φ̂(1)

LC]x→−∞,

[û(2)
UC]x→−∞, and [û(2)

LC]x→−∞ appearing on the right-hand side of (3.19) are related to
the corresponding values as x → ∞ by[

φ̂
(1)
UC

]
x→−∞ =

[
φ̂

(1)
UC

]
x→∞ − λ1

D

d

dv

(
vM +

2TU

ρ v

)
, (3.21a)

[
φ̂

(1)
LC

]
x→−∞ =

[
φ̂

(1)
LC

]
x→∞ + λ1

d

dv

(
vM − 2TL

v

)
, (3.21b)

[
û

(2)
UC

]
x→−∞ =

[
û

(2)
UC

]
x→∞ − vM − λ2

1

dM

dv
, (3.21c)
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[
û

(2)
LC

]
x→−∞ =

[
û

(2)
LC

]
x→∞ − vM − λ2

1

dM

dv
, (3.21d)

where M , TU , and TL are defined by (2.28b–d). We can easily estimate that λ2 in (3.19)
will have non-zero real part in view of (3.21). Thus, the core solution is obtained up
to the orders that can determine the stability of the solitary wave both for dE/dv < 0
and dE/dv > 0. The [φ̂(1)

UC]x→∞, [φ̂(1)
LC]x→∞, [û(2)

UC]x→∞, and [û(2)
LC]x→∞, which are necessary

for determining the specific value of λ2 in (3.19), are given after matching the core
solution with the far-field solution. The far-field solution is given in Appendix B and
the matching is accomplished in Appendix C. The results for [φ̂(1)

UC]x→∞, [φ̂(1)
LC]x→∞,

[û(2)
UC]x→∞, and [û(2)

LC]x→∞ can be found in (C6a–d) and (C7a–d).
Substituting (3.21) with (C6a–d) or (C7a–d) into (3.19), we have

λ2 = λ1

{
− Q

|λ1| +
ρv

(ρ + D)dE/dv

[
d

dv

(
TU/ρ + TL

v

)]2
}

(3.22a)

for dE/dv < 0, and

λ2 =

⎧⎨
⎩±Q +

ρvλ1

(ρ + D)dE/dv

[
d

dv

(
TU/ρ + TL

v

)]2

if Q < 0,

no solution if Q > 0,

(3.22b)

for dE/dv > 0, where

Q =
v2E

2(dE/dv)2

(
dM

dv
− M

E

dE

dv

)
dΩ

dv
. (3.23)

Thus, the eigenvalue λ is explicitly obtained up to the second order in ε by (3.2)
with (3.18) and (3.22). The corresponding eigenfunctions are (3.3) with (3.1), (3.14),
and (3.17) for the core solution, and (B2) with (B17), (B21), and (C6e–h) or (C7e–h)
for the far-field solution. It should be noted that, when ρ = 0 and dE/dv > 0, Q

given by (3.23) in the present study reduces to Q defined by (3.40) of Kataoka &
Tsutahara (2004a), where surface solitary waves were treated for dE/dv > 0. In the
same way, the eigenvalues and eigenfunctions in the present study correspond with
those of Kataoka & Tsutahara (2004a) when ρ = 0 and dE/dv > 0 (specifically in
their paper the eigenvalues are (3.2) with (3.11) and (3.39), the eigenfunctions for the
core solution are (3.3) with (3.1) and (3.9), and those for the far-field solution are
(3.18) with (3.22), (3.26), (3.30), and (3.37 c–e) or (3.38 c–e) of Kataoka & Tsutahara
(2004a).

From (3.18) and (3.22b), there exists a solution for which λ has a positive real part
if dE/dv < 0 or Q < 0. Now we can say that

dE

dv
< 0 or Q < 0 (3.24)

is a sufficient condition for the transverse instability of interfacial solitary waves,
where E and Q are defined by (2.26) and (3.23), respectively.

It should be noted that the above stability analysis is based on the full Euler
equations. In the limit of small amplitude, our results agree with those based on the
Kadomtsev–Petviashivili (KP) equation. See Appendix D for details.

A remark should be given for the case when a solitary wave steepens to have vertical
tangent and overhangs (Meiron & Saffman 1983; Amick & Turner 1986; Pullin &
Grimshaw 1988; Sha & Vanden-Broeck 1993; Laget & Dias 1997; Rusȧs & Grue
2002). In this case, the interfacial displacement ηI of the solitary wave has an infinite
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slope (|dηI/dx| = ∞). One may consider that the appearance of a singular term for

the component function η̂
(0)
C =dηI/dx (see (3.1)) may invalidate the above asymptotic

analysis. However, the basic equations (3.4)–(3.10) can be reduced to a form in which
η̂

(n)
C appear solely as η̂

(n)
C cos θ , where θ = arctan(dηI/dx). Since η̂

(0)
C cos θ = sin θ is

finite and smooth at vertical tangent θ = ± π/2, the singularity essentially disappears
in the basic equations (3.4)–(3.10) and the above analysis is valid for the overhanging
solitary waves. See Kataoka (2006, Sections 2 and 3.1.1) for more details on this
point.

4. Derivation of a general statement
We show that the sufficient condition (3.24) for the transverse instability leads to

the following general statement on the stability of interfacial solitary waves.

Proposition. Suppose that the interfacial solitary wave solutions do not bifurcate,
and trace the branch of solitary wave solutions for fixed ρ and D from small amplitude.
Suppose also that v and M never become stationary at the first stationary value of E.
Then, the solitary waves become transversely unstable before an exchange of longitudinal
stability occurs.

Proof. If the solitary wave solutions do not bifurcate, and v never becomes sta-
tionary at the first stationary value of E, an exchange of longitudinal stability occurs
at the first stationary value of E around which (2.27) holds (Kataoka 2006). From
(2.27) and the fact that the first exchange of longitudinal stability generates a gro-
wing disturbance mode (because small-amplitude solitary waves are stable (Jeffery &
Kakutani 1970; Benjamin 1972)), an inequality (dE/dv)(dM/dv)(dΩ/dv) < 0, i.e.

dE

dv
< 0 or

dM

dv

dΩ

dv
< 0 (4.1)

holds if one approaches the first point of dE/dv = 0 from the small-amplitude side.
Moreover, from the hypothesis that M never becomes stationary at the first stationary
value of E, an inequality ∣∣∣∣ME dE

dv

∣∣∣∣ <

∣∣∣∣dM

dv

∣∣∣∣ (4.2)

holds if one approaches the first point of dE/dv =0. A combination of (4.1) and (4.2)
satisfies the sufficient condition (3.24) for the transverse instability.

It should be noted that the hypothesis introduced in the proposition that the solitary
wave solutions do not bifurcate means that a new solution branch never appears from
the regular solution branch for given ρ and D. This hypothesis together with the other
hypothesis that v and M never become stationary at the first stationary value of E,
will hold in general because numerical results in the previous studies have provided
no evidence of violating these hypotheses (Funakoshi & Oikawa 1986; Pullin &
Grimshaw 1988; Kataoka 2006). Examples of the solitary wave solution branches are
shown in figure 2(a–c), while some specific values of v, E, and M are shown in table
1 (wave amplitude h in table 1 is defined by (5.1) below).

5. Stability of specific solitary waves
Let us apply the criterion (3.24) to specific solitary wave solutions. For a clear

intuitive picture of the wave form, we here define the wave amplitude of the solitary
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(D, ρ) = (1, 0.0006) (D,ρ) = (3, 0.03) (D, ρ) = (10, 0.1)

h v E M h v E M h v E M

0.76 1.29180 1.0380 2.0795 0.98 1.3267 1.6463 2.5740 1.90 1.5259 7.2230 5.4241
0.77 1.29373 1.0478 2.0809 1.00 1.3307 1.6762 2.5778 1.92 1.5300 7.3308 5.4339
0.78 1.29552 1.0566 2.0812 1.02 1.3345 1.7032 2.5783 1.94 1.5339 7.4332 5.4387
0.79 1.29716 1.0642 2.0805 1.04 1.3380 1.7268 2.5751 1.96 1.5377 7.5281 5.4374
0.80 1.29864 1.0706 2.0786 1.06 1.3412 1.7461 2.5676 1.98 1.5412 7.6123 5.4278
0.81 1.29993 1.0757 2.0755 1.08 1.3440 1.7598 2.5546 1.99 1.5428 7.6490 5.4188
0.82 1.30101 1.0793 2.0711 1.09 1.3452 1.7640 2.5456 2.00 1.5444 7.6806 5.4062
0.83 1.30187 1.0813 2.0654 1.10 1.3463 1.7661 2.5345 2.01 1.5458 7.7055 5.3888
0.84 1.30248 1.0815 2.0583 1.11 1.3471 1.7655 2.5209 2.02 1.5471 7.7212 5.3649
0.85 1.30283 1.0800 2.0497 1.12 1.3477 1.7615 2.5042 2.03 1.5481 7.7226 5.3310
0.86 1.30289 1.0767 2.0397 1.13 1.3480 1.7531 2.4834 2.04 1.5485 7.6973 5.2787
0.87 1.30266 1.0716 2.0284 1.14 1.3475 1.7383 2.4568 2.05 1.5471 7.5762 5.1603

Table 1. Wave speeds v, total wave energies E, and masses M of interfacial solitary waves as
functions of wave amplitude h. The cases (D,ρ) = (1, 0.0006), (3,0.03), and (10,0.1) are shown.
The bold-face letters indicate the first extreme values when a solution branch is traced from
small amplitude (h � 1).

wave by the dimensionless maximum interfacial displacement

h ≡ max |ηI | . (5.1)

Depending on the situation, we use either v or h as one of the parameters of the
solitary wave. The interfacial solitary waves are characterized by either (ρ, D, v) or
(ρ, D, h). In § 2 the existence of the solitary wave solution was discussed in terms of
the former set (ρ, D, v) (see the paragraph including (2.20)). Here we make the same
discussion in terms of (ρ, D, h). The condition for the existence of the solitary wave
solution is

0 < h < H, (5.2)

where H is a limiting wave amplitude of the solitary wave that takes the following
values:

(i) When ρ is larger than some critical value, or ρ >ρcr(D), where ρcr(D) is an
increasing function of D specifically given by (2.22), H is equal to the amplitude of
internal bores:

H =
|D − √

ρ|
1 +

√
ρ

for ρ >ρcr(D) (5.3)

(Funakoshi & Oikawa 1986; Laget & Dias 1997; Dias & Vanden-Broeck 2003).
(ii) When ρ is smaller than the above critical value, or ρ <ρcr(D), H is smaller

than the amplitude of internal bores:

H <
|D − √

ρ|
1 +

√
ρ

for ρ <ρcr(D), (5.4)

and a precise limiting amplitude H in this case is not found due to the computational
difficulty of specifying it.

The solitary wave solutions, whose existence is discussed in terms of (ρ, D, v) in § 2
and in terms of (ρ, D, h) in the previous paragraph, are numerically calculated using
the method described in Turner & Vanden-Broeck (1988). For ρ <D2 (which can
be either ρ <ρcr(D) or ρ >ρcr(D)) the solitary waves are of elevation type, and for
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Figure 2. Total wave energy E versus wave speed v of interfacial solitary waves: (a) D = 1;
(b) D = 3; (c) D = 10. On the solid lines whose end points are denoted by the circles, the
solitary waves satisfy the sufficient condition (3.24) for the transverse instability. The positions
of the circles are determined by Q = 0, and Q < 0 for the solid lines. For ρ � 0.001 (D = 1),
ρ � 0.06 (D = 3), and ρ � 0.21 (D = 10), there are no solitary waves that satisfy the condition
(3.24) for the transverse instability. The crosses represent the points of dE/dv = 0 at which
an exchange of longitudinal stability first occurs when a solution branch is traced from small
amplitude (v,E) = (c, 0) (see (2.20)). The corresponding critical amplitudes h at the crosses are
shown in the square brackets. The upper limiting values v = V (see (2.23)) of the wave speed
for ρ > ρcr(D) are, for instance, V = 1.38, 1.38, 1.37, 1.56, and 2.02 when (ρ,D) = (0.0006, 1),
(0.0007,1), (0.001,1), (0.06,3), and (0.21,10), respectively.

ρ > D2 (which can only be ρ >ρcr(D)) they are of depression type (Amick & Turner
1986; Funakoshi & Oikawa 1986). The former is treated in § 5.1 and the latter in § 5.2.

5.1. Solitary waves of elevation (ρ < D2)

Figure 2 shows the total wave energy E of solitary waves versus wave speed v

for various values of ρ( < D2), when D = 1, 3, and 10. The upper limiting values
v =V of the wave speed for ρ >ρcr(D) defined by (2.23) are given in the figure
caption. In figure 2, the crosses denote the points of dE/dv = 0 at which an exchange
of longitudinal stability first occurs when a solution branch is traced from small



268 T. Kataoka

h

0 0.0005 0.0010
0.6

0.7

0.8

0.9

(a)

(c) (d )

(b)

1.0

0 0.02 0.04 0.06 0.08
0.5

1.0

1.5

2.0

2.5

h

0 0.1 0.2
ρ ρ

0.3

2

4

6

8

0 0.05 0.10 0.15

1

2

3

Figure 3. Critical amplitudes h at which interfacial solitary waves first begin or cease to
satisfy the sufficient condition (3.24) for the transverse instability (denoted by the circles)
and those h at which an exchange of longitudinal stability first occurs (denoted by the
crosses) when a solution branch is traced from small amplitude (h � 1). (a) D =1; (b) D =3;
(c) D = 10; (d) blow up of the rectangular region in (c). Positions of the circles are all determined
by Q = 0. The solitary waves satisfy the sufficient condition (3.24) for the transverse instability
in a parameter region enclosed by the dotted lines which connect the circles and the h-axis.
The crosses are all located in this region. The dash-dot lines show the limiting wave amplitude
h =H (see (5.3)) for ρ >ρcr(D).

amplitude. The solitary wave solutions satisfy the sufficient condition (3.24) for the
transverse instability on the solid lines whose end points are denoted by the circles.
From figure 2, we see that any crosses are located on the solid lines. When a
solution branch is traced from small amplitude, therefore, the solitary waves become
transversely unstable before an exchange of longitudinal stability occurs, as stated in
the proposition.

Figure 3 plots various critical amplitudes on a (ρ, h)-plane for D = 1, 3, and 10
(figure 3d is a blow up of the rectangular region in figure 3c). The crosses are the
recognized critical amplitudes of dE/dv = 0 at which an exchange of longitudinal
stability first occurs, and the open circles are those at which the solitary waves of
elevation first begin or cease to satisfy the sufficient condition (3.24) for the transverse
instability when a solution branch is traced from small amplitude (h � 1). The dash-
dot lines represent the limiting wave amplitude h =H for ρ > ρcr(D) defined by (5.3).
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D =1 D = 3 D =10

ρ hT (hL) ρ hT (hL) ρ hT (hL)

0.0001 0.717 (0.786) 0.0001 0.714 (0.781) 0.0001 0.714 (0.781)
0.0002 0.722 (0.792) 0.001 0.719 (0.788) 0.001 0.718 (0.787)
0.0003 0.726 (0.799) 0.005 0.742 (0.819) 0.005 0.739 (0.814)
0.0004 0.732 (0.808) 0.01 0.774 (0.862) 0.01 0.766 (0.851)
0.0005 0.738 (0.819) 0.02 0.851 (0.967) 0.02 0.829 (0.936)
0.0006 0.744 (0.837) 0.03 0.956 (1.10) 0.05 1.10 (1.27)
0.0007 0.752 (–) 0.04 1.11 (1.28) 0.1 1.86 (2.03)
0.0009 0.778 (–) 0.05 1.43 (1.57) 0.15 2.97 (3.09)
0.001 – (–) 0.06 – (–) 0.21 – (–)

Table 2. Critical amplitudes at which the solitary waves of elevation first begin to satisfy
the sufficient condition (3.24) for the transverse instability (denoted by hT ) and those at
which an exchange of longitudinal stability first occurs (denoted by hL in the parentheses)
when a solution branch is traced from small amplitude. The cases D = 1, 3, 10 are presented.
The – indicates that there is no corresponding critical amplitude.

Multiple solitary wave solutions may exist for given h of course. In such case, the
stability given by figure 3 applies to the first solitary wave that reaches a given h when
a solution branch is traced from small amplitude. In these figures the solitary waves
satisfy the sufficient condition (3.24) for the transverse instability in the parameter
region enclosed by the dotted lines (which connect the circles) and the h-axis. We see
that the crosses are all located inside this region of transverse instability, indicating
that the critical amplitude for an exchange of longitudinal stability is always larger
than that of the transverse instability for given ρ and D. In table 2, these two critical
amplitudes are given for various values of ρ, and D = 1, 3, and 10.

5.2. Solitary waves of depression (ρ >D2)

For all the solitary waves of depression investigated by us, dE/dv is always positive,
indicating that no exchange of longitudinal stability occurs, and the sufficient
condition (3.24) for the transverse instability is never satisfied.

6. Physical interpretation
Let us discuss the physical mechanism of the transverse instability by considering

the meaning of the analytical solution obtained in § 3. The solution was obtained from
the linearized equations (2.29)–(2.36) for disturbances, so that quantities involving the
square of disturbances are neglected here. On the basis of the linearized equations, we
sought an asymptotic solution for small transverse wavenumbers ε of disturbances.
The corresponding core solution up to O(ε2) is given by (3.3) with (3.1), (3.14), and
(3.17), and it represents distortion in the phase shift and the wave speed of the solitary
wave, plus generation of a residual to it:⎛

⎝ΦU (x, z; v) + φ̂UC exp(λt + iεy)

ΦL(x, z; v) + φ̂LC exp(λt + iεy)
ηI (x; v) + η̂C exp(λt + iεy)

⎞
⎠ =

⎛
⎝ΦU (x − δx, z; v + δv)

ΦL(x − δx, z; v + δv)
ηI (x − δx; v + δv)

⎞
⎠

− ε2δx

⎛
⎜⎝

φ̄
(2)
UC

φ̄
(2)
LC

η̄
(2)
C

⎞
⎟⎠+ O(ε3), (6.1)
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Figure 4. The crest of a distorted solitary wave and its motion induced by the energy flow
in the transverse direction associated with distortion in the phase shift of the solitary wave.
(a) dE/dv > 0 (oscillatory motion); (b) dE/dv < 0 (self-focusing-type instability). The region
enclosed by the two dashed lines in (a) represents an example of a control volume, and δx
represents the phase shift.

where the second term on the right-hand side represents the residual, and

δx = − exp(λt + iεy), δv =
∂(δx)

∂t
(6.2)

are the phase shift and a perturbed wave speed of the distorted solitary wave,
respectively. A schematic of δx is shown in figure 4 as a function of y, which describes
the crest (peak) of the distorted solitary wave at some instantaneous time t .

Let us physically interpret (3.13), which is a time-evolution equation for δx . Taking
a control volume pinched by two control surfaces y =constant and y =constant+�y

(see the dashed lines in figure 4a), and multiplying (3.13) for n= 2 by ε2vδx�y, we
obtain the following leading-order evolution equation:

∂E(v + δv1)

∂t
�y = − ∂

∂y

∫ ∞

−∞

{∫ D

ηI

[
ρ

2

((
∂ΦU

∂x

)2

+

(
∂ΦU

∂z

)2)
+p

]
∂ΦU (x − δx, z; v)

∂y
dz

+

∫ ηI

−1

[
1

2

((
∂ΦL

∂x

)2

+

(
∂ΦL

∂z

)2)
+p

]
∂ΦL(x − δx, z; v)

∂y
dz

}
dx�y,

(6.3)

where E(v) is the energy of the solitary wave per unit transverse width defined by
(2.26), and δv1 is the perturbed wave speed of O(ε) (or δv = δv1 + δv2 + . . . with
δvn = O(εn)). In deriving (6.3), we used the following Bernoulli equations for the
solitary wave solution in the upper and lower fluid layers, respectively:

ρv
∂ΦU

∂x
=

ρ

2

[(
∂ΦU

∂x

)2

+

(
∂ΦU

∂z

)2
]

+ p, v
∂ΦL

∂x
=

1

2

[(
∂ΦL

∂x

)2

+

(
∂ΦL

∂z

)2
]

+ p,

(6.4)
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where p(x, z) is the difference of the pressure of the solitary wave from its hydrostatic
value. The left-hand side of (6.3) represents the rate of change of energy E(v+δv1)�y

of the distorted solitary wave in the control volume, while the right-hand side
represents the rate of energy flow into the control volume through the two control
surfaces. The argument x − δx of ∂ΦU/∂y and ∂ΦL/∂y indicates that this energy flow
is caused by the distortion in the phase shift δx of the solitary wave. Thus, the leading-
order evolution equation describes a motion induced by the energy flow in the trans-
verse direction associated with distortion in the phase shift δx of the solitary wave.

The terms on the right-hand side of (6.3) reduce to −ε2vEδx�y (see (3.15)), which
has an opposite sign to that of δx. The energy of the solitary wave in the control
volume, therefore, increases (the left-hand side of (6.3) becomes positive) when δx < 0
and decreases when δx > 0 (see figure 4). For dE/dv > 0, then, the wave speed δv1

increases when the crest is behind the original position (δx < 0), and decreases when
it is ahead (δx > 0), so that δx is subjected to oscillations (figure 4a). The stability in
this case is not determined by (6.3) but by the higher-order equation. For dE/dv < 0,
on the other hand, the wave speed δv1 decreases when the crest is behind the original
position, and increases when it is ahead, so that |δx| increases for sufficiently large
times and the instability results (figure 4b). The transverse instability of this type is
called the self-focusing (Ostrovsky & Shrira 1976; Shrira 1980; Kivshar & Pelinovsky
2000).

Let us consider the physical meaning of the next-order equation. Multiplying (3.13)
for n=3 by ε3vδx�y and using (6.4), we obtain the next-order evolution equation:

2
∂E(v + δv2)

∂t
�y

= −∂Ê2

∂t
�y − ∂

∂y

∫ ∞

−∞

{∫ D

ηI

[
ρ

2

((
∂ΦU

∂x

)2

+

(
∂ΦU

∂z

)2
)

+p

]
∂ΦU (x, z; v + δv1)

∂y
dz

+

∫ ηI

−1

[
1

2

((
∂ΦL

∂x

)2

+

(
∂ΦL

∂z

)2
)

+ p

]
∂ΦL(x, z; v + δv1)

∂y
dz

}
dx�y, (6.5)

where δv2 is the perturbed wave speed of O(ε2), and

Ê2 = −ε2δx

{∫ ∞

−∞

[
− ρ

2

((
∂ΦU

∂x

)2

+

(
∂ΦU

∂z

)2)

+
1

2

((
∂ΦL

∂x

)2

+

(
∂ΦL

∂z

)2)
+ (1 − ρ)ηI

]
z = ηI

η̄
(2)
C dx

+ ρ

∫ ∞

−∞

∫ D

ηI

(
∂ΦU

∂x

∂φ̄
(2)
UC

∂x
+

∂ΦU

∂z

∂φ̄
(2)
UC

∂z

)
dx dz

+

∫ ∞

−∞

∫ ηI

−1

(
∂ΦL

∂x

∂φ̄
(2)
LC

∂x
+

∂ΦL

∂z

∂φ̄
(2)
LC

∂z

)
dx dz

}
(6.6)

is the energy due to the product of the solitary wave and the residual
−ε2δx(φ̄(2)

UC, φ̄
(2)
LC, η̄

(2)
C ) per unit transverse width. The left-hand side of (6.5) represents

the next-order rate of change of energy of the distorted solitary wave in the control
volume. The first term on the right-hand side of (6.5) represents the rate of transfer of
energy to the residual in the control volume, while the remaining terms are the next-
order rate of energy flow into the control volume through the two control surfaces.
The parameter v + δv1 of ∂ΦU/∂y and ∂ΦL/∂y indicates that this energy flow is
caused by distortion in the wave speed δv1 of the solitary wave. Thus, the next-order
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evolution equation describes a motion induced by the two effects: transfer of energy
to the residual in the control volume and the energy flow in the transverse direction
due to distortion in the wave speed δv1 of the solitary wave.

For dE/dv > 0, the sum of the above two effects, given by the right-hand side of
(6.5) reduces to a quantity proportional to δx and one proportional to δv1 as

2
∂E(v + δv2)

∂t
�y = − 2ε3ρv2E�y

(ρ + D)dE/dv

[
d

dv

(
TU/ρ + TL

v

)]2

δx

+ 2ε2 dE

dv
�y ×

{
(−Qδv1) when

[
η̄

(2)
C

]
x→∞ = 0,

Qδv1 when
[
η̄

(2)
C

]
x→−∞ = 0,

(6.7)

which can be obtained by substituting (3.21) and (C6a–d) (when [η̄(2)
C ]x→∞ = 0) or

(C7a–d) (when [η̄(2)
C ]x→−∞ = 0) into (3.19) multiplied by ε3vδx�y. The first term

proportional to δx on the right-hand side of (6.7) has an opposite sign to δx and
only plays the role of modifying the frequency of oscillation when dE/dv > 0. The
second term proportional to δv1 changes sign depending on whether the residual is
accompanied by linear waves propagating ahead of the solitary wave or behind the
solitary wave (the propagating linear waves are expressed by the terms including
exp(k1X1) and exp(k̄1X1) of (B17)). Since the wave speed of a linear wave is smaller
than that of the solitary wave, for sufficiently large times there are no linear waves
propagating ahead of the solitary wave, or [η̄(2)

C ]x→∞ = 0 (the first case of (6.7)). Thus,
from the contribution of the second term on the right-hand side of (6.7), for Q < 0, the
second-order wave energy and speed δv2 increase (the left-hand side of (6.7) becomes
positive) when the crest is moving forward (δv1 > 0), and decrease when it is moving
backward (δv1 < 0), which leads to amplification of the oscillations (see figure 5).
This is a new type of instability first found for surface solitary waves (Kataoka &
Tsutahara 2004a) and discovered for interfacial solitary waves in the present study.

7. Concluding remarks
We have examined the linear stability of finite-amplitude interfacial solitary waves

in a two-layer fluid of finite depth on the basis of the Euler equations. An asymptotic
analysis is performed, which provides an explicit criterion of instability in the case
of long-wavelength transverse disturbances. This result leads to the general statement
that, when the branch of the solitary wave solution is traced from small amplitude, the
solution becomes transversely unstable before an exchange of longitudinal stability
occurs. We then applied the criterion of instability to specific solitary wave solutions,
and the results are consistent with the above general statement. Physical interpretation
of the analytical solution was also given.

It should be noted that the stability analysis of the present study is based on the
full Euler equations. In the limit of small amplitude, our results agree with those
based on the KP equation (see Appendix D).

We conclude with two remarks. First, the analysis given in this paper is for the case
of finite-depth fluid, because we used the condition that the tail of the solitary wave
decays exponentially. When either the upper or the lower fluid is infinitely deep, the
tail of the solitary wave decays algebraically (Benjamin 1967; Davis & Acrivos 1967;
Pullin & Grimshaw 1988), and an analysis that takes into account the slow decay
must be used for the case of infinite depth. Second, the present analysis is limited
to the stability to long-wavelength transverse disturbances (ε � 1). To study the
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x

y

⇐

⇐

E(v + δv2) increases

Crest

δv2 increases

δv2 decreases

E(v + δv2) decreases

δv1

δv1 > 0

δv1 < 0

Figure 5. The crest of a distorted solitary wave and the mechanism leading to amplification
of the oscillations, when dE/dv > 0 and Q < 0. δv1 and δv2 are the first- and second-order
perturbed wave speeds of the solitary wave, respectively. E(v + δv2) represents the energy of
the solitary wave with a second-order variation.

stability to disturbances of finite transverse wavelength (ε = O(1)), we must resort to
a numerical means. The present author is now making such a numerical investigation
for surface solitary waves (ρ = 0), and the results will be reported elsewhere.

The author thanks the referees for their valuable comments and suggestions, which
have led to improvement of the paper.

Appendix A. Derivation of (3.16)
Equation (3.16) is obtained if the integrand on its left-hand side, i.e.,

ρ

2

∫ D

ηI

[(
∂ΦU

∂x

)2

−
(

∂ΦU

∂z

)2
]

dz +
1

2

∫ ηI

−1

[(
∂ΦL

∂x

)2

−
(

∂ΦL

∂z

)2
]

dz − 1 − ρ

2
η2

I

(A 1)

vanishes. Differentiating (A1) with respect to x and using integration by parts with
the aid of (2.11)–(2.15) and (2.17), we have

d(A1)

dx
=

[{
−ρ

2

((
∂ΦU

∂x

)2

−
(

∂ΦU

∂z

)2
)

+
1

2

((
∂ΦL

∂x

)2

−
(

∂ΦL

∂z

)2
)

− (1 − ρ)ηI

}
dηI

dx
+ ρ

∂ΦU

∂x

∂ΦU

∂z
− ∂ΦL

∂x

∂ΦL

∂z

]
z = ηI
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=

[
−ρv

∂ΦU

∂x
+

ρ

2

((
∂ΦU

∂x

)2

+

(
∂ΦU

∂z

)2
)

+ v
∂ΦL

∂x

−1

2

((
∂ΦL

∂x

)2

+

(
∂ΦL

∂z

)2
)

− (1 − ρ)ηI

]
z = ηI

dηI

dx
,

where (2.11)–(2.13) and (2.17) are used to obtain the first equality, and (2.14) and
(2.15) to obtain the last equality. From (2.16), the above far-right side vanishes. The
x-derivative of (A1) therefore vanishes, and from (2.18), (A1) itself vanishes.

Appendix B. Far-field solution
The core solution obtained in § 3 has non-zero values as x → ± ∞, and does not

satisfy the decaying boundary conditions (2.36). The reason for this is that the terms
including λ and those including vd/dx (or v∂/∂x) are not balanced in (2.32)–(2.34).
Since λ will have non-zero real part at O(ε) or O(ε2) (see the statement after
(3.21d)), the solution will decay over the distance of x = O(ε−1) or O(ε−2) through the
balance of these terms. The balance is achieved by introducing the following reduced
coordinates with respect to x:

X1 = εx, X2 = ε2x. (B 1)

We then seek a solution of (2.29)–(2.35) with a moderate variation in X1, X2, and z

(∂ĥ/∂X1 = O(ĥ), ∂ĥ/∂X2 = O(ĥ), and ∂ĥ/∂z =O(ĥ), where ĥ represents (φ̂U , φ̂L, η̂)),
in the following power series of ε:

φ̂UF = εφ̂
(1)
UF (X1, X2, z) + ε2φ̂

(2)
UF (X1, X2, z) + · · · , (B 2a)

φ̂LF = εφ̂
(1)
LF (X1, X2, z) + ε2φ̂

(2)
LF (X1, X2, z) + · · · , (B 2b)

η̂F = ε2η̂
(2)
F (X1, X2) + ε3η̂

(3)
F (X1, X2) + · · · , (B 2c)

where the subscript F is attached to indicate the type of solution (far-field solution).
The series (B2a–c) start from O(ε), O(ε), and O(ε2) for φ̂UF , φ̂LF , and η̂F , respectively,
in accordance with the core solution having non-zero values as x → ± ∞ from these
orders (see (3.21)).

Substituting (B1) and (B2) into (2.29)–(2.35), and collecting the same-order terms
in ε, we obtain a series of equations for (φ̂(n)

UF , φ̂
(n)
LF , η̂

(n+1)
F ) (n= 1, 2, . . .):

∂2φ̂
(n)
UF

∂z2
= I (n) for 0 <z < D, (B 3)

∂2φ̂
(n)
LF

∂z2
= J (n) for −1 < z < 0, (B 4)

∂φ̂
(n)
UF

∂z
=0 at z = D, (B 5)

∂φ̂
(n)
UF

∂z
= K (n),

∂φ̂
(n)
LF

∂z
= K (n) at z = 0, (B6a, b)

(
v

∂

∂X1

− λ1

)(
ρφ̂

(n)
UF − φ̂

(n)
LF

)
+ (1 − ρ)η̂(n+1)

F = L(n) at z = 0, (B 7)

∂φ̂
(n)
LF

∂z
= 0 at z = −1, (B 8)
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where

I (n) = φ̂
(n−2)
UF − ∂2φ̂

(n−2)
UF

∂X2
1

− 2
∂2φ̂

(n−3)
UF

∂X1∂X2

− ∂2φ̂
(n−4)
UF

∂X2
2

, (B 9)

J (n) = φ̂
(n−2)
LF − ∂2φ̂

(n−2)
LF

∂X2
1

− 2
∂2φ̂

(n−3)
LF

∂X1∂X2

− ∂2φ̂
(n−4)
LF

∂X2
2

, (B 10)

K (n) =

(
λ1 − v

∂

∂X1

)
η̂

(n−1)
F +

(
λ2 − v

∂

∂X2

)
η̂

(n−2)
F +

n−2∑
m=3

λmη̂
(n−m)
F , (B 11)

L(n) =

(
λ2 − v

∂

∂X2

)(
ρφ̂

(n−1)
UF − φ̂

(n−1)
LF

)
+

n∑
m =3

λm

(
ρφ̂

(n−m+1)
UF − φ̂

(n−m+1)
LF

)
. (B 12)

Note that φ̂
(m)
UF and φ̂

(m)
LF for m � 0 and η̂

(m)
F for m � 1 on the right-hand sides of

(B9)–(B12) are zero.
For n= 1 and 2, the above set of equations (B3)–(B8) is homogeneous and has a

solution independent of z:

φ̂
(1)
UF = φ̂

(1)
UF (X1, X2), φ̂

(1)
LF = φ̂

(1)
LF (X1, X2), (B13a, b)

η̂
(2)
F =

1

1 − ρ

(
λ1 − v

∂

∂X1

)[
ρφ̂

(1)
UF − φ̂

(1)
LF

]
z = 0

, (B13c)

and

φ̂
(2)
UF = φ̂

(2)
UF (X1, X2), φ̂

(2)
LF = φ̂

(2)
LF (X1, X2), (B14a, b)

η̂
(3)
F =

1

1 − ρ

(
λ1 − v

∂

∂X1

)[
ρφ̂

(2)
UF − φ̂

(2)
LF

]
z =0

+
1

1 − ρ

(
λ2 − v

∂

∂X2

)[
ρφ̂

(1)
UF − φ̂

(1)
LF

]
z = 0

,

(B14c)

where the quantities in the square brackets with subscript z = 0 are evaluated at z = 0.
For n= 3, 4, . . . , the set of equations (B3)–(B8) is inhomogeneous. For this set

to have a solution, its inhomogeneous terms I (n), J (n), and K (n) must satisfy the
solvability conditions:

−
∫ D

0

I (n)dz =

∫ 0

−1

J (n)dz = K (n). (B 15)

For n=3, (B15) become[
(v2 − c2)

∂2

∂X2
1

− 2vλ1

∂

∂X1

+ λ2
1 + c2

] (
ρφ̂

(1)
UF − φ̂

(1)
LF

)
= 0, (B 16a)(

∂2

∂X2
1

− 1

)(
Dφ̂

(1)
UF + φ̂

(1)
LF

)
= 0, (B 16b)

where c and λ1 are given by (2.21) and (3.18), respectively. Equations (B16) together
with (B13c) determine the dependence of (φ̂(1)

UF , φ̂
(1)
LF , η̂

(2)
F ) on X1 as

φ̂
(1)
UF = − q exp(k1X1) + q̄ exp(k̄1X1)

D
+ r exp(X1) + r̄ exp(−X1), (B 17a)

φ̂
(1)
LF = q exp(k1X1) + q̄ exp(k̄1X1) + ρ [r exp(X1) + r̄ exp(−X1)] , (B 17b)
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η̂
(2)
F =

(vβ + c)q exp(k1X1) − (vβ − c)q̄ exp(k̄1X1)

c(v2 − c2)
λ1, (B 17c)

where q , q̄ , r , and r̄ are undetermined functions of X2. The k1 and k̄1 are the following
given constants:

k1 =
v + βc

v2 − c2
λ1, k̄1 =

v − βc

v2 − c2
λ1, (B18a, b)

where

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i

√
−
(

1 +
v2 − c2

vE

dE

dv

)
for

dE

dv
< − vE

v2 − c2
,√

1 +
v2 − c2

vE

dE

dv
for

dE

dv
> − vE

v2 − c2
.

(B 19)

The coefficients (v + βc)
/
(v2 − c2) and (v − βc)

/
(v2 − c2) in (B18) have positive real

parts when dE/dv < 0, since v > c (see (2.20)) and Re[β] < 1. Thus, Re[k1] and Re[k̄1]
have the same sign as that of λ1 (which is real) for dE/dv < 0.

For n= 4, (B15) become[
(v2 − c2)

∂2

∂X2
1

− 2vλ1

∂

∂X1

+ λ2
1 + c2

] (
ρφ̂

(2)
UF − φ̂

(2)
LF

)
= 2

[
−(v2 − c2)

∂2

∂X1∂X2

+ v

(
λ1

∂

∂X2

+ λ2

∂

∂X1

)
− λ1λ2

] (
ρφ̂

(1)
UF − φ̂

(1)
LF

)
,

(B 20a)(
∂2

∂X2
1

− 1

)(
Dφ̂

(2)
UF + φ̂

(2)
LF

)
= − 2

∂2
(
Dφ̂

(1)
UF + φ̂

(1)
LF

)
∂X1∂X2

. (B 20b)

For (φ̂(2)
UF , φ̂

(2)
LF ) to have a solution that is not secular in X1, the inhomogeneous terms

on the right-hand sides of (B20) must vanish, and we have

q = q± exp(k2X2), q̄ = q̄± exp(k̄2X2), (B21a, b)

r = r±, r̄ = r̄±, (B21c, d)

where q+, q̄+, r+, and r̄+ are undetermined constants for X1, X2 > 0, and q−, q̄−, r−,
and r̄− are those for X1, X2 < 0. The k2 and k̄2 are the following given constants:

k2 =
v + c/β

v2 − c2
λ2, k̄2 =

v − c/β

v2 − c2
λ2, (B22a, b)

where the coefficients (v + c/β)/(v2 − c2) and (v − c/β)/(v2 − c2) are positive when
dE/dv > 0, since v > c (see (2.20)) and β > 1. Thus, Re[k2] and Re[k̄2] have the same
sign as that of Re[λ2] for dE/dv > 0.

Appendix C. Matching of the core solution and the far-field solution

Let us connect the core solution (φ̂UC, φ̂LC, η̂C) obtained in § 3 and the far-
field solution (φ̂UF , φ̂LF , η̂F ) obtained in Appendix B. In the core region, the
far-field solution (φ̂(n)

UF , φ̂
(n)
LF , η̂

(n)
F ) is expanded in power series of X1 (or εx) and X2

(or ε2x):

ĥ
(n)
F =

(
ĥ

(n)
F

)
0
+ εx

(
∂ĥ

(n)
F

∂X1

)
0

+ ε2

[
x2

2

(
∂2ĥ

(n)
F

∂X2
1

)
0

+ x

(
∂ĥ

(n)
F

∂X2

)
0

]
+ · · · , (C 1)
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where ĥ represents (φ̂U , φ̂L, η̂), and the quantities in the parentheses with a subscript
0 are evaluated at X1 = X2 = 0. With this reordering, we collect the same orders of

ε, and have a reordered form (say, (φ̂(n)∗
UF , φ̂

(n)∗
LF , η̂

(n)∗
F )) of (φ̂(n)

UF , φ̂
(n)
LF , η̂

(n)
F ). We then

compare the forms of the two solutions (φ̂(n)
UC, φ̂

(n)
LC, η̂

(n)
C ) and (φ̂(n)∗

UF , φ̂
(n)∗
LF , η̂

(n)∗
F ) at each

n and match them from n= 1. The matching is accomplished if the conditions[
φ̂

(n)
UC

]
x→±∞ = φ̂

(n)∗
UF ,

[
φ̂

(n)
LC

]
x→±∞ = φ̂

(n)∗
LF ,

[
η̂

(n)
C

]
x→±∞ = η̂

(n)∗
F , (C 2)

are satisfied.
For n=1, since φ̂

(1)∗
UF = (φ̂(1)

UF )0 and φ̂
(1)∗
LF = (φ̂(1)

LF )0, the matching is accomplished if

[
φ̂

(1)
UC

]
x→±∞ = − q± + q̄±

D
+ r± + r̄±,

[
φ̂

(1)
LC

]
x→±∞ = q± + q̄± + ρ(r± + r̄±), (C3a, b)

where (B17a, b) with (B21) are used, and both upper or both lower signs should be
chosen in the double signs.

For n= 2, since φ̂
(2)∗
UF = (φ̂(2)

UF )0 + x(∂φ̂
(1)
UF /∂X1)0 and φ̂

(2)∗
LF = (φ̂(2)

LF )0 + x(∂φ̂
(1)
LF /∂X1)0,

two different kinds of terms, i.e. those independent of x and those proportional to x,
are included in the matching conditions for φ̂U and φ̂L. The relations among those
proportional to x contribute to a determination of the unknowns at this order. It is
convenient to represent them in terms of û

(2)
UC and û

(2)
LC defined by (3.20), i.e.[

û
(2)
UC

]
x→±∞ =

βλ1

c
(−q± + q̄±) − D(r± − r̄±), (C 4a)

[
û

(2)
LC

]
x→±∞ =

βλ1

c
(−q± + q̄±) + ρ(r± − r̄±), (C 4b)

where (B17) with (B21) are used, and both upper or both lower signs should be
chosen in the double signs. The matching conditions for η̂ are automatically satisfied
if (C3) and (C4) are satisfied.

Moreover, from the boundary conditions (2.36) and the fact that Re[k1] and Re[k̄1]
in (B17a, b) have the same sign as that of λ1 (which is real) for dE/dv < 0 (see the
statement after (B19)), and Re[k2] and Re[k̄2] have the same sign as that of Re[λ2]
for dE/dv > 0 (see the statement after (B22)), we have

q+ = q̄+ = r+ = r̄− =0 when λ1 > 0, (C 5a)

q− = q̄− = r+ = r̄− = 0 when λ1 < 0, (C 5b)

for dE/dv < 0, and

q+ = q̄+ = r+ = r̄− = 0 when Re[λ2] > 0, (C5c)

q− = q̄− = r+ = r̄− = 0 when Re[λ2] < 0, (C5d)

for dE/dv > 0. The twelve undetermined constants [φ̂(1)
UC]x→∞, [φ̂(1)

LC]x→∞, [û(2)
UC]x→∞,

[û(2)
LC]x→∞, q±, q̄±, r±, and r̄± (note that [φ̂(1)

UC]x→−∞, [φ̂(1)
LC]x→−∞, [û(2)

UC]x→−∞, and

[û(2)
LC]x→−∞ are given by (3.21)) are determined by the twelve equations (C3)–(C5).

We have

ρ
[
φ̂

(1)
UC

]
x→∞ =

[
φ̂

(1)
LC

]
x→∞ =

ρ

D

[
û

(2)
UC

]
x→∞ = −

[
û

(2)
LC

]
x→∞ =

λ1

ρ + D

d

dv

(
TU + ρTL

v

)
,

(C6a–d)

q+ = q̄+ = r+ = r̄− = 0, (C6e)
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q− =
c

2β

(
vM

λ1

+ λ1

dM

dv

)
− c2λ1

2(1 − ρ)

dΩ

dv
, (C6f )

q̄− = − c

2β

(
vM

λ1

+ λ1

dM

dv

)
− c2λ1

2(1 − ρ)

dΩ

dv
, (C6g)

r− = − r̄+ = − λ1

ρ + D

d

dv

(
TU/ρ + TL

v

)
, (C6h)

when λ1 > 0 and dE/dv < 0 or Re[λ2] > 0 and dE/dv > 0, and

[
φ̂

(1)
UC

]
x→∞ =

λ1

ρ + D

d

dv

(
−Ω +

TU/ρ + TL

v

)
, (C 7a)

[
φ̂

(1)
LC

]
x→∞ =

λ1

ρ + D

d

dv

(
DΩ +

TU + ρTL

v

)
, (C 7b)

[
û

(2)
UC

]
x→∞ = vM + λ2

1

dM

dv
+

Dλ1

ρ + D

d

dv

(
TU/ρ + TL

v

)
, (C 7c)

[
û

(2)
LC

]
x→∞ = vM + λ2

1

dM

dv
− λ1

ρ + D

d

dv

(
TU + ρTL

v

)
, (C 7d)

q− = q̄− = r+ = r̄− = 0, (C 7e)

q+ = − c

2β

(
vM

λ1

+ λ1

dM

dv

)
+

c2λ1

2(1 − ρ)

dΩ

dv
, (C 7f)

q̄+ =
c

2β

(
vM

λ1

+ λ1

dM

dv

)
+

c2λ1

2(1 − ρ)

dΩ

dv
, (C 7g)

r− = −r̄+ = − λ1

ρ + D

d

dv

(
TU/ρ + TL

v

)
, (C 7h)

when λ1 < 0 and dE/dv < 0 or Re[λ2] < 0 and dE/dv > 0. Note that E, Ω , M , TU ,
and TL are defined by (2.26) and (2.28).

Appendix D. Small-amplitude limit
The Kadomtsev–Petviashvili (KP) equation with negative dispersion (Kadomtsev &

Petviashvili 1970) is often used for analysing the three-dimensional motion of small-
amplitude long waves in a two-layer fluid. The KP equation is derived systematically
from the set of Euler equations (2.1)–(2.7) by assuming small amplitude and long
waves. Specifically, the following scalings for the variables in the Euler set:

∂

∂y
= O(δ2),

∂

∂z
= O(1),

∂

∂t
= O(δ3), (D 1a)

∂

∂x
= O(δ), η = O(δ2),

∂φv

∂x
= − v + O(δ2),

∂φL

∂x
= − v + O(δ2), (D 1b)

for small δ with

vs ≡ v − c = O(δ2) (D 2)
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(c is defined by (2.21)), lead to the KP equation with negative dispersion:

∂

∂x

[
∂η

∂t
− vs

∂η

∂x
+ α1

∂

∂x

(
η2

2

)
+ α2

∂3η

∂x3

]
+

c

2

∂2η

∂y2
= 0, (D 3)

where

α1 = − 3c

2D

ρ − D2

ρ + D
, α2 =

cD

6

ρD + 1

ρ + D
( > 0) (D 4)

(see Craig, Guyenne & Kalisch (2005) for a derivation using Hamiltonian
formulation). The velocity potentials φU and φL are related to η by

−D

c

(
∂φU

∂x
+ v

)
=

1

c

(
∂φL

∂x
+ v

)
= η. (D 5)

The KP equation (D3) has the following solitary wave solution for vs > 0:

η = ηs(x) ≡ 3vs

α1

sech2

(√
vs

α2

x

2

)
. (D 6)

To examine the linear stability of this small-amplitude solitary wave (D6) with respect
to transverse disturbances, we put

η = ηs(x) + η̂(x) exp(λt + iεy), (D 7)

where ε is a given positive constant and λ is a complex constant to be determined.
Substituting (D7) into (D3) and linearizing with respect to η̂, we have

d

dx

[
λη̂ − vs

dη̂

dx
+ α1

d

dx
(ηsη̂) + α2

d3η̂

dx3

]
− c

2
ε2η̂ = 0. (D 8)

This equation (D8) together with a decaying condition

η̂(x) → 0 as x → ± ∞, (D 9)

constitutes an eigenvalue problem for η̂ with eigenvalue λ. We can make an asymptotic
analysis of this system (D8) and (D9) for small ε in the same way as described in
Kataoka & Tsutahara (2004b). They sought a solution of (D8) and (D9) where the
ηs of the third term on the left-hand side of (D8) is replaced by a general function of
ηs (say f (ηs)). In their paper the analysis for dP/dvs > 0 with

P (vs) =
1

2

∫ ∞

−∞
η2

s dx, (D 10)

was given, but that for dP/dvs < 0 can be made in a similar way, so that the reader is
referred to that paper for the analytical process. Here only the results are presented
for both cases. The asymptotic solution of (D8) and (D9) for small ε is expressed in
power series of ε as (3.2), (3.3c), (B2c), and their components are given as follows:
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The λ1 and λ2 are

λ1 =

⎧⎪⎪⎨
⎪⎪⎩

±
√

−cP

dP/dvs

for
dP

dvs

< 0,

± i

√
cP

dP/dvs

for
dP

dvs

> 0,

λ2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− λ1

|λ1|Qs for
dP

dvs

< 0,{
±Qs if Qs < 0,

no solution if Qs > 0,
for

dP

dvs

> 0,

(D11a, b)
where P is defined by (D10) and

Qs(vs) = − cP

4(dP/dvs)2

(
dM

dvs

− M

P

dP

dvs

)
dM

dvs

, M(vs) =

∫ ∞

−∞
ηs dx. (D12a, b)

The η̂
(0)
C , η̂

(1)
C (core solution), and η̂

(2)
F (far-field solution) are

η̂
(0)
C =

dηs

dx
, η̂

(1)
C = − λ1

∂ηs

∂vs

, (D13a, b)

η̂
(2)
F =

k1s

c
qs± exp(k1sX1 + k2sX2) +

k̄1s

c
q̄s± exp(k̄1sX1 + k̄2sX2), (D13c)

where X1 and X2 are defined by (B1), and k1s , k̄1s , k2s , k̄2s are the following given
constants:

k1s =
λ1

2vs

(1 + βs), k̄1s =
λ1

2vs

(1 − βs), k2s =
λ2

2vs

(
1 +

1

βs

)
, k̄2s =

λ2

2vs

(
1 − 1

βs

)
,

(D 14)

with

βs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i

√
−
(

1 +
2vs

P

dP

dvs

)
for

dP

dvs

< − P

2vs

,

√
1 +

2vs

P

dP

dvs

for
dP

dvs

> − P

2vs

.

(D 15)

In (D13c), qs+ and q̄s+ are coefficients for X1, X2 > 0, while qs− and q̄s− are those for
X1, X2 < 0, and specifically given by

qs+ = q̄s+ =0, qs− =
c

βs

(
k1svs

dM

dvs

+
cM

2λ1

)
, q̄s− = − c

βs

(
k̄1svs

dM

dvs

+
cM

2λ1

)
,

(D 16)

when λ1 > 0 and dP/dvs < 0 or λ2 > 0 and dP/dvs > 0, while

qs+ = − c

βs

(
k1svs

dM

dvs

+
cM

2λ1

)
, q̄s+ =

c

βs

(
k̄1svs

dM

dvs

+
cM

2λ1

)
, qs− = q̄s− = 0,

(D 17)
when λ1 < 0 and dP/dvs < 0 or λ2 < 0 and dP/dvs > 0.

From (D11), there is a solution for which λ has a positive real part if dP/dvs < 0 or
Qs < 0. Thus, a sufficient condition for the transverse instability of a small-amplitude
solitary wave is

dP

dvs

< 0 or Qs < 0. (D 18)



Transverse instability of interfacial solitary waves 281

The solution (D6) never satisfies the condition (D18), which is consistent with the
stability results shown in § 4. In fact, the above criterion (D18) and the asymptotic
solution (λ given by (D11), the core solution given by (D13a, b), and the far-field
solution given by (D13c)) of the KP equation can be derived directly from the
criterion (3.24) and the asymptotic solution (λ given by (3.18) and (3.22), the core
solution given by (3.1) and (3.14), and the far-field solution given by (B17c)) of the
Euler set only by applying the scalings (D1b) and (D2) ((D1a) are not used) and
keeping the leading-order terms in δ of each component. In that process, note that
v − c → vs = O(δ2), d/dv → d/dvs = O(δ−2), E → 2(1 − ρ)P =O(δ3), M = O(δ),
TU = O(δ3), TL =O(δ3), dΩ/dv → −c(1 + ρ/D)dM/dvs, k1 → k1s , k2 → k2s, β → βs ,
q± → qs±, and q̄± → q̄s± as δ → 0.
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